Development and Evaluation of Stochastic Rainfall Models for Urban Drought Security Assessment

AFM Kamal Chowdhury

Graduate Certificate (Engineering Geology) BSc Engineering (Civil and Environmental)

A thesis submitted for the degree of Doctor of Philosophy at the University of Newcastle, Australia

December 2016

The thesis contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text. I give consent to the final version of my thesis being made available worldwide when deposited in the University's Digital Repository, subject to the provisions of the Copyright Act 1968.

AFM Kamal Chowdhury

I hereby certify that the work embodied in this thesis contains published paper/s/scholarly work of which I am a joint author. I have included as part of the thesis a written statement, endorsed by my supervisor, attesting to my contribution to the joint publication/s/scholarly work.

AFM Kamal Chowdhury

Professor Garry Willgoose Principal Supervisor

Acknowledgements

I am grateful to the almighty for giving me the strength and ability to accomplish this PhD.

I would like to thank my supervisors, Professor Garry Willgoose, Professor George Kuczera and Dr. Natalie Lockart for their time, support and advises. I am also grateful to Dr. Anthony Kiem and all other colleagues in ESCCI-ECL project. I have learned research as well as culture and life by working with this outstanding team of ESCCI-ECL project. I would like to thank Ms. Cherie Pilgrim and Ms. Anne Ramsey for their time and supports.

I am grateful to my parents, who have dreamt and done their best to ensure my study, despite the adverse socio-economic conditions. My heartfelt thanks to my parents in law, my brothers and sisters, and all other family and friends for their prayers and encouragements. I cannot thank enough my wife, Shanta Islam. Thank you, Shanta for the support and sacrifices over the last three and half years. I am also grateful to all of my ex-teachers, including Professor Aktarul Islam Chowdhury, the supervisor of my undergraduate thesis.

Funding for this project was provided by an Australian Research Council Linkage Grant LP120200494, the NSW Office of Environment and Heritage, NSW Department of Financial Services, NSW office of Water, and Hunter Water Corporation.

Table of Contents

1.	INTRODUCTION	1
1.1	General Background	1
1.2	Aims	3
1.3	Stochastic Models Developed and Assessed	3
1.4	Overview	4
2.	BACKGROUND	9
21	Introduction	9
2.2	Hydrology for Water Security Assessment	9
2.3	Influence of Large-scale Climate Drivers	
2.4	Selection of a Model Framework	12
2.5	Resolving the Underestimation of Long-term Variability	19
2.6	The Modified Markov Kernel Density (MMKD) Model	23
2.7	SimHyd Hydrology Model for Streamflow Generation	26
2.8	East Coast Lows and its Importance for Water Security	27
2.9	Conclusion	
3	DATA STUDY SITES AND ASSESSMENT METHODS	31
5.		
3.1	Introduction	
3.2	Data	
3.3	Study Sites	
5.4 2.5	Tamparal Desolutions	43
3.3 2.6	Cummun Site for Draliminary Accessment	40 46
3.0 2.7	Distribution of 7 Scores in Gridded Dataset	40 47
3.7	Calculation of Temporally and Spatially Averaged Statistics	/+/ /18
3.0	Assessment Method for Validation	48
3.10	Assessment Method for Streamflow Generation	
4.	DEVELOPMENT OF THE MARKOV CHAIN DAILY RAINFALL MODEL	50
41	Introduction	50
4.2	Average Parameter Markov Chain (APMC) Model.	
4.3	Decadal Parameter Markov Chain (DPMC) Model	
4.4	Compound Distribution Markov Chain (CDMC) Model	
4.5	Hierarchical Markov Chain (HMC) Model	
4.6	Decadal and Hierarchical Markov Chain (DHMC) Model	
4.7	Methodological Comparison of Five MC Models	
4.8	Discussion	
4.9	Conclusion	
5.	COMPARISON OF MC MODELS AT GUMMUN	93
5.1	Introduction	
5.2	Distribution Statistics of Rainfall Depths and Wet Periods	
5.3	Model Comparison for Distribution Statistics	
5.4	Potential Impact of Climate Modes	
5.5	Impact of Stochasticity of MC Parameters	
5.6	Model Comparison for Autocorrelations	
5.7	Discussion	
5.8	Conclusion	111

6.	COMPARISON OF MC MODELS IN GOULBURN RIVER SITE	113
6.1	Introduction	113
6.2	Calibrated Parameters	113
6.3	Distribution Statistics of Rainfall Depths and Wet Periods	118
6.4	Model Comparison for Distribution of Rainfall Depths	122
6.5	Model Comparison for Distribution of Wet Periods	129
6.6	Summary of Model Comparison for Distribution Statistics	139
67	Model Comparison for Autocorrelation	142
6.8	Discussion	146
6.9	Conclusion	149
0.7		177
7.	COMPARISON OF MC MODELS IN WILLIAMS RIVER SITE	150
7.1	Introduction	150
7.2	Calibrated Parameters	150
7.3	Distribution Statistics of Rainfall Depths and Wet-Dry Periods	154
7.4	Model Comparison for Distribution of Rainfall Depths	157
7.5	Model Comparison for Distribution of Wet-Dry Periods	160
7.6	Summary of Model Comparison for Distribution Statistics.	166
77	Model Comparison for Autocorrelation	169
78	Climate Change Trend of Model Parameters	170
70	Discussion	172
7.9	Conclusion	174
/.10		1/4
8.	COMPARISON OF MC MODELS IN SYDNEY SITE	176
8.1	Introduction	176
8.2	Calibrated Parameters	176
8.3	Distribution Statistics of Rainfall Depths and Wet Periods	179
8.4	Model Comparison for Distribution of Rainfall Depths	181
8 5	Model Comparison for Distribution of Wet Periods	183
8.6	Summary of Model Comparison for Distribution Statistics	187
87	Model Comparison for Autocorrelation	190
8.8	Discussion	101
8.9	Conclusion	192
0.7		172
9.	COMPARISON OF MC MODELS IN RICHMOND RIVER SITE	193
9.1	Introduction	193
9.2	Calibrated Parameters	193
9.3	Distribution Statistics of Rainfall Depths and Wet Periods	196
9.4	Model Comparison for Distribution of Rainfall Depths	198
9.5	Model Comparison for Distribution of Wet Periods	199
9.6	Summary of Model Comparison for Distribution Statistics	202
9.7	Model Comparison for Autocorrelation	205
9.8	Discussion	205
9.9	Conclusion	200
10.	COMPARISON OF MC MODELS IN BEGA RIVER SITE	208
10.1	Introduction	208
10.2	Calibrated Parameters	208
10.3	Distribution Statistics of Rainfall Depths and Wet Periods	211
10.4	Model Comparison for Distribution of Rainfall Depths	212
10.5	Model Comparison for Distribution of Wet Periods	214
10.5	Summary of Model Comparison for Distribution Statistics	218
10.0	Model Comparison for Autocorrelation	210
10.7	Discussion	220
10.0	Conclusion	221
10.9	001101101011	444

11.	GEOGRAPHICAL COMPARISON OF RAINFALL AND MODEL PERFORMANCES	223
11.1	Introduction	
11.2	Five Case Study Sites along East Coast of Australia	223
11.3	Rainfall Variability along the East Coast of Australia	224
11.4	Comparison of CDMC, HMC and DHMC	227
11.5	Conclusion	228
12.	COMPARISON OF MC AND MMKD FOR RAINGAUGE DATA AROUND AUSTRALL	A229
12.1	Introduction	229
12.2	Methodological Comparison	230
12.3	Distribution Statistics of Observed Rainfall.	231
12.4	Model Comparison for Distribution Statistics	238
12.5	Autocorrelations of Monthly wet Days and Rainfall Depth	249 252
12.0	Model Comparison for Autocorrelations Insights for Simulation of Mean of Multivear Painfall Depths	232 253
12.7	Discussion	255 254
12.0	Conclusion	255
13.	COMPARISON OF MC AND MMKD FOR RAINGAUGE DATA AROUND SYDNEY	257
13.1	Introduction	257
13.2	Mean and SD of Daily and Monthly Rainfall Depths	257
13.3	Mean and SD of Multivear Rainfall Depths.	260
13.4	Mean and SD of Monthly and Multivear Number of Wet Days	261
13.5	Mean and SD of Monthly and Annual Mean Length of Wet Spells	263
13.6	Discussion and Conclusion	265
14.	COMPARISON OF MC AND MMKD FOR VALIDATION PERIODS	266
14.1	Introduction	266
14.2	Observed Statistics	266
14.3	Model Comparison for Calibration Period	271
14.4	Model Comparison for Validation Period	271
14.5	Discussion and Conclusion	277
15.	COMPARISON OF MC AND MMKD FOR STREAMFLOW GENERATION	279
15.1	Introduction	279
15.2	Justification of Using Single-site Rainfall Model	281
15.3	Distribution of Rainfall and Streamflow	283
15.4	Model Comparison for Distribution Statistics	287
15.5	Model Comparison for Autocorrelation	298
15.6	Discussion and Conclusion	299
16.	CONCLUSION	302
16.1	Overview	302
16.2	Selection of Modelling Structure and Relevant Issues	302
16.3	Development of Markov Chain Daily Rainfall Models	303
16.4	Comparison of Five MC Models for Rainfall Generation	303
16.5	Comparison of MC and MMKD for Rainfall Generation	305
10.0	Comparison of MC and MMKD for Streamflow Generation	
10./	ruture works	
10.8	Concluding Achiarks	
REFI	ERENCES	309
APPI	ENDICES	316

List of Figures

Figure 1.1: Flowchart of the chapter arrangement of this study5
Figure 3.1: Elevation map for NARCliM data boundary in the eastern seaboard of Australia
Figure 3.2: Location of the five case study sites (in rectangular boxes) of this study. The green circles
indicate the major cities/towns along the east coast of NSW
Figure 3.3: NARCliM elevation map (at 10 km resolution) of the case study area in Goulburn River site.
Figure 3.4: NARCliM elevation map (at 10 km resolution) of the case study area in Williams River site.
White region is in ocean
Figure 3.5: NARCliM elevation map (at 10 km resolution) of the case study area in the Sydney site. The
white region is in the ocean
Figure 3.6: NARCliM elevation map (at 10 km resolution) of the case study area in Richmond River site.
The white region is in the ocean
Figure 3.7: NARCliM elevation map (at 10 km resolution) of the case study area in Bega River site. The
white region is in the ocean
Figure 3.8 Location map of 12 raingauge stations around Australia
Figure 3.9: Location map of 30 raingauge stations around Sydney (from Mehrotra et al. [2015]). Station
numbers correspond to the station names listed in Table 3.240
Figure 3.10: The Grahamstown, Tillegra and Chichester sub-catchments of Williams River site are
shown in left. The location and elevation of the sub-catchments area within Williams River site are
shown in right. The boxes represent the 10 km \times 10 km NARCliM grid pixels. The (x, y)
coordinates shown in the left figure corresponds to the (x, y) coordinates of right figure. The
distance scale refers to the left hand figure with the catchment boundaries
Figure 3.11: Location of Gummun and Blackville, and 17 other raingauge stations within the NARCliM
data boundary at Goulburn River site in the east coast of Australia
Figure 4.1: Schematic of the APMC. Compare the red boxes with the same of Figure 4.10, Figure 4.21,
Figure 4.30 and Figure 4.31 to see the changes in DPMC, CDMC, HMC and DHMC respectively.
Figure 4.2: MC parameters P00 and P11 (transition probabilities of dry-to-dry and wet-to-wet day
respectively), and Gamma distribution parameters μ and σ (mean and SD of wet day rainfall
depths respectively) of APMC in RCM2 and AWAP. The parameters are shown for each month,
where the first month is January
Figure 4.3: Month-to-month autocorrelations of monthly rainfall depths and number of wet days in
RCM2 and AWAP
Figure 4.4: Distribution of wet day rainfall depths in RCM2 and APMC simulation for January, April,
July, and September (typical months)
Figure 4.5: Distribution of wet day rainfall depths between 0.3 mm and 1mm in RCM2 and APMC
simulation for January, April, July and September (typical months)60

Figure 4.6: Gamma distribution with different α and β
Figure 4.7: Changes of μ and σ with changes of α and β
Figure 4.8: Box-cox transformation of wet day rainfall depths in RCM2 using $\lambda = 0.1402$ (left).
Correlation of transformed rainfall depths in successive wet days (right)
Figure 4.9: Simulation of wet and dry spells in APMC for January (a typical month) for RCM263
Figure 4.10: Schematic of the DPMC. Compare the red boxes with the same of Figure 4.1 Figure 4.21,
Figure 4.30 and Figure 4.31 to see the relative differences in APMC, CDMC, HMC and DHMC
respectively
Figure 4.11: Comparison of the decadal variability of the DPMC parameters (wet-to-wet probabilities
P11 and mean wet day rainfalls μ) with the APMC parameters. The coloured lines are the values of
DPMC parameters and the thick black lines are the values of APMC parameters65
Figure 4.12: Sampling distributions of DPMC parameters (P11 and μ) for January and July as two
representative months. The blue horizontal bars are the 5 th to 95 th percentile bounds, the boxes are
the 25 th to 75 th percentile bounds, and the red horizontal bars are the 50 th percentiles of the 6 \times
1000 realisations of simulated parameter. The red dots show the DPMC parameter values,
calculated from each of the 10-year samples of RCM2 data at Gummun. The green dots show the
respective APMC value of a parameter67
Figure 4.13: Parameters (P11 and μ) of sub-samples of RCM2 according to the two IPO (positive and
negative) and three ENSO phases (La Niña, Neutral and El Niño)69
Figure 4.14: Correlation between the 12x 60 values of each parameter (P00, P11, μ , and σ) for RCM2
and ONI, nino3.4, MEI, PDOI climate indices70
Figure 4.15: Correlation between the 12x 60 values of each parameter (P00, P11, μ , and σ) for RCM2
and SOI, SAMI, DMI, and IPOI climate indices70
Figure 4.16: Boxplot distribution of μ and σ for every month. Each boxplot is fitted to the 60 values a
parameter for respective month. The blue horizontal bars are the 5 th to 95 th percentile bounds, the
boxes are the 25 th to 75 th percentile bounds, and the red horizontal bars are the 50 th percentiles. The
green dots show the APMC parameters (equivalent to the average of 60 distributed values)73
Figure 4.17: Lognormal probability plots of μ for each month for RCM274
Figure 4.18: Lognormal probability plots of σ for each month for RCM275
Figure 4.19: Correlation between $log \mu$ and $log \sigma$ for each month for RCM2
Figure 4.20: Month-to-month autocorrelations of $log \mu$ and $log \sigma$ for RCM2 and AWAP76
Figure 4.21: Schematic of the CDMC (compare with the Figure 4.1, Figure 4.10, Figure 4.30 and Figure
4.31)
Figure 4.22: Normal probability plots of P00 for each month for RCM279
Figure 4.23: Normal probability plots of P11 for each month for RCM279
Figure 4.24: Correlation between P00 and P11 for each month for RCM280
Figure 4.25: Month-to-month autocorrelations of P00 and P11 for RCM2 and AWAP80
Figure 4.26: Correlation between $log \mu$ and P11 for each month for RCM281
Figure 4.27: Correlation between $log \sigma$ and P11 for each month for RCM2

Figure 4.28: Correlation between <i>log</i> µ and P00 for each month for RCM2	82
Figure 4.29: Correlation between $log \sigma$ and P00 for each month for RCM2	83
Figure 4.30: Schematic of the HMC (compare with the Figure 4.1, Figure 4.10, Figure 4.21 and Figu	ure
4.31)	84
Figure 4.31: Schematic of the DHMC (compare with the Figure 4.1, Figure 4.10, Figure 4.21 and Fi	gure
4.30)	87
Figure 5.1: Mean and SD of rainfall depths for RCM2 and AWAP at daily and monthly resolutions.	94
Figure 5.2: Mean and SD of rainfall depths for RCM2 and AWAP at multiyear (aggregated rainfall	
depths for multiple overlapping years) resolutions.	94
Figure 5.3: Mean and SD of monthly number of wet days for RCM2 and AWAP	95
Figure 5.4: Mean and SD of multiyear number of wet days in RCM2 and AWAP.	95
Figure 5.5: Mean and SD of monthly mean length of wet spells for RCM2 and AWAP	96
Figure 5.6: Comparison of APMC, DPMC, CDMC, HMC, and DHMC to reproduce the mean and S	SD of
daily (wet day) rainfall depths for RCM2 and AWAP	97
Figure 5.7: Comparison of APMC, DPMC, CDMC, HMC, and DHMC to reproduce the mean and S	SD of
monthly rainfall depths for RCM2 and AWAP.	98
Figure 5.8: Comparison of APMC, DPMC, CDMC, HMC and DHMC to reproduce the mean and SI	D of
multiyear rainfall depths for RCM2 and AWAP.	99
Figure 5.9: Comparison of APMC, DPMC, CDMC, HMC and DHMC to reproduce the mean and SI	D of
monthly number of wet days for RCM2 and AWAP	100
Figure 5.10: Comparison of APMC, DPMC, CDMC, HMC and DHMC to reproduce the mean and	SD of
multiyear number of wet days for RCM2 and AWAP. The Z scores of APMC and CDMC for	
AWAP are out of the +6 range.	101
Figure 5.11: Comparison of APMC, DPMC, CDMC, HMC, and DHMC to reproduce the mean and	SD
of monthly mean length of wet spells for RCM2 and AWAP.	102
Figure 5.12: Comparison of APMC, DPMC, CDMC, HMC, and DHMC to reproduce the mean and	SD
of annual mean length of wet spells for RCM2 and AWAP	103
Figure 5.13: Comparison of DPMC and other DPMC-like models (e.g. model with sub-samples of 5	5-year
length, model with sub-samples according to IPO and ENSO phases) to reproduce the mean an	nd
SD of monthly rainfall depths for RCM2.	105
Figure 5.14: Comparison of HMC and other HMC-like models (e.g. model with lag-1 autocorrelation	on
equation and model with multivariate sampling for stochastic MC parameters) to reproduce th	e
mean and SD of monthly rainfall depths for RCM2.	106
Figure 5.15: Comparison of APMC, DPMC, CDMC, HMC and DHMC to reproduce the month-to-r	nonth
autocorrelations of monthly rainfall depths and monthly number of wet days for RCM2	107
Figure 5.16: Comparison of APMC, DPMC, CDMC, HMC and DHMC to reproduce the month-to-r	nonth
autocorrelations of monthly rainfall depths and monthly number of wet days for AWAP	108
Figure 6.1: Intra-annual and spatial variability of dry-to-dry transition probabilities (P00). The	
colourbars indicate the parameter values.	115

Figure 6.2: Intra-annual and spatial variability of wet-to-wet transition probabilities (P11). The
colourbars indicate the parameter values
Figure 6.3: Intra-annual and spatial variability of the mean of wet day rainfall depths (μ) for all RCMs
and AWAP at Goulburn. The colourbars indicate the parameter values116
Figure 6.4: Intra-annual and spatial variability of the SD of wet day rainfall depths (σ) for all RCMs and
AWAP at Goulburn. The colourbars indicate the parameter values
Figure 6.5: Correlation between elevation and model parameters for each month117
Figure 6.6: Mean and SD of rainfall depths at daily, monthly and multiyear resolutions
Figure 6.7: Intra-annual and spatial variability of the mean monthly number of wet days
Figure 6.8: Intra-annual and spatial variability of the SD of monthly number of wet days120
Figure 6.9: Mean and SD of number of wet days at monthly and multiyear resolutions
Figure 6.10: Mean and SD of mean length of wet spells at monthly and annual resolutions
Figure 6.11: Z Scores of CDMC, HMC and DHMC for the mean of wet day rainfall depths
Figure 6.12: Z Scores of CDMC, HMC and DHMC for the SD of wet day rainfall depths124
Figure 6.13: Z Scores of CDMC, HMC, and DHMC for the SD of monthly rainfall depths
Figure 6.14: Z Scores of CDMC, HMC and DHMC for the mean annual rainfall depths
Figure 6.15: Z Scores of CDMC, HMC and DHMC for the SD of multiyear rainfall depths
Figure 6.16: Z Scores of CDMC, HMC and DHMC for the mean of monthly number of wet days130
Figure 6.17: Z Scores of CDMC, HMC and DHMC for the SD of monthly number of wet days
Figure 6.18: Z Scores of CDMC, HMC and DHMC for the mean of multiyear number of wet days 132
Figure 6.19: Z Scores of CDMC, HMC and DHMC for the SD of multiyear number of wet days133
Figure 6.20: Z Scores of CDMC, HMC and DHMC for the mean of monthly mean length of wet spells.
Figure 6.21: Z Scores of CDMC, HMC and DHMC for the SD of monthly mean length of wet spells. 136
Figure 6.22: Z Scores of CDMC, HMC and DHMC for the mean of annual mean length of wet spells.137
Figure 6.23: Z Scores of CDMC, HMC and DHMC for the SD of annual mean length of wet spells138
Figure 6.24: Month-to-month autocorrelations of monthly rainfall depths and number of wet days in all
RCMs and AWAP at Goulburn
Figure 6.25: Comparison of CDMC, HMC and DHMC to reproduce the month-to-month
autocorrelations of monthly rainfall depths for all RCMs and AWAP144
Figure 6.26: Comparison of CDMC, HMC and DHMC to reproduce the month-to-month
autocorrelations of monthly number of wet days for all RCMs and AWAP145
Figure 7.1: Intra-annual and spatial variability of dry-to-dry and wet-to-wet transition probabilities. The
colourbars indicate the parameter values
Figure 7.2: Intra-annual and spatial variability of mean and SD of wet day rainfall depths. The colourbars
indicate the parameter values152
Figure 7.3: Correlation between elevation and model parameters (APMC values)
Figure 7.4: Mean and SD of rainfall depths at daily, monthly and multiyear resolutions
Figure 7.5: Mean and SD of number of wet and dry days at monthly and annual resolutions

Figure 7.6: Mean and SD of mean length of wet and dry spells at monthly and annual resolutions	156	
re 7.7: Z Scores of CDMC, HMC and DHMC for the SD of multiyear rainfall depths		
Figure 7.8: 100 CDMC realisations of SD of multiyear rainfall depths (dashed lines) for RCM2 d	lata at	
two NARCliM pixels. The green solid lines indicate the expected values with 95% confide	nce	
limit. The red lines indicate the RCM2 values		
Figure 7.9: Z Scores of CDMC, HMC and DHMC for the mean of monthly mean length of wet s	pells.	
	161	
Figure 7.10: Z Scores of CDMC, HMC and DHMC for the mean of monthly mean length of dry	spells.	
	162	
Figure 7.11: Z Scores of CDMC, HMC and DHMC for the SD of monthly number of wet days	163	
Figure 7.12: Z Scores of CDMC, HMC and DHMC for the SD of monthly mean length of dry sp	ells. 164	
Figure 7.13: Z Scores of CDMC, HMC and DHMC for the SD of annual mean length of wet spel	lls165	
Figure 7.14: Z Scores of CDMC, HMC and DHMC for the SD of multiyear number of wet days.	166	
Figure 7.15: Month-to-month autocorrelations of monthly rainfall depths in all RCMs and AWA	P 169	
Figure 7.16: Month-to-month autocorrelations of monthly number of wet days	169	
Figure 7.17: Intra-annual and spatial variability of model parameters (APMC values) for reanalyst	sis and	
CCCMA 3.1 of RCM2	171	
Figure 8.1: Intra-annual and spatial variability of dry-to-dry and wet-to-wet transition probabilities	es. The	
colourbars indicate the parameter values.	177	
Figure 8.2: Intra-annual and spatial variability of mean and SD of wet day rainfall depths. The co	lourbars	
indicate the parameter values	178	
Figure 8.3: Correlation between elevation and model parameters for each month	179	
Figure 8.4: Spatial variability of the SD of multiyear rainfall depths		
Figure 8.5: Spatial variability of the SD of multiyear number of wet days		
Figure 8.6: Z Scores of CDMC, HMC and DHMC for the SD of multiyear rainfall depths		
Figure 8.7: Z Scores of CDMC, HMC and DHMC for the SD of monthly number of wet days	184	
Figure 8.8: Z Scores of CDMC, HMC and DHMC for the SD of multiyear number of wet days	186	
Figure 8.9: Z Scores of CDMC, HMC and DHMC for the SD of annual mean length of wet spell	s187	
Figure 8.10: Month-to-month autocorrelations of monthly rainfall depths in all RCMs and AWA	P 190	
Figure 8.11: Month-to-month autocorrelations of monthly number of wet days in all RCMs and A	AWAP.	
	190	
Figure 9.1: Intra-annual and spatial variability of dry-to-dry and wet-to-wet transition probabilitie	es. The	
colourbars indicate the parameter values.	194	
Figure 9.2: Intra-annual and spatial variability of mean and SD of wet day rainfall depths. The co	olourbars	
indicate the parameter values	195	
Figure 9.3: Correlation between elevation and model parameters for each month.	196	
Figure 9.4: Spatial variability of the SD of multiyear rainfall depths.	197	
Figure 9.5: Spatial variability of the SD of multiyear number of wet days	197	
Figure 9.6: Z Scores of CDMC, HMC and DHMC for the SD of multiyear rainfall depths	199	

Figure 9.7: Z Scores of CDMC, HMC and DHMC for the SD of monthly number of wet days	200
Figure 9.8: Z Scores of CDMC, HMC and DHMC for the SD of multiyear number of wet days2	201
Figure 9.9: Z Scores of CDMC, HMC and DHMC for the SD of annual mean length of wet spells2	202
Figure 9.10: Month-to-month autocorrelations of monthly rainfall depths in all RCMs and AWAP2	205
Figure 9.11: Month-to-month autocorrelations of monthly number of wet days in all RCMs and AWAP	2.

Figure 10.3: Intra-annual and spatial variability of mean wet day rainfall depths......209 Figure 10.4: Intra-annual and spatial variability of SD of wet day rainfall depths......210 Figure 10.5: Correlation between elevation and model parameters for each month......210 Figure 10.7: Spatial variability of the SD of multiyear number of wet days......211 Figure 10.8: Z Scores of CDMC, HMC and DHMC for the SD of multivear rainfall depths......213 Figure 10.9: Z Scores of CDMC, HMC and DHMC for the SD of monthly number of wet days.215 Figure 10.10: Z Scores of CDMC, HMC and DHMC for the SD of multiyear number of wet days.217 Figure 10.11: Z Scores of CDMC, HMC and DHMC for the SD of annual mean length of wet spells. .217 Figure 12.1: Mean and SD of monthly number of wet days and rainfall depth for the coastal (top 6 panels), inland (middle 4 panels), and monsoonal (bottom 2 panels) stations around Australia. Each left y-axis denotes mean and SD of number of wet days per month, and each right y-axis denotes Figure 12.2: SD of multiyear number of wet days (each left y-axis) and multiyear rainfall depth (each Figure 12.4: Comparison of model performances for mean of daily rainfall depths.239 Figure 12.5: Comparison of model performances for SD of daily rainfall depths.240 Figure 12.6: Comparison of model performances for mean of multiyear rainfall depths......242 Figure 12.7: Comparison of model performances for SD of multiyear rainfall depths.243 Figure 12.8: Comparison of model performances for mean of monthly number of wet days......245 Figure 12.9: Comparison of model performances for SD of monthly number of wet days......246 Figure 12.10: Comparison of model performances for SD of multiyear number of wet days......247 Figure 12.11: Comparison of models for mean of annual mean length of wet spells......248 Figure 12.13: Month-to-month autocorrelations of monthly number of wet days and monthly rainfall Figure 12.14: Month-to-month autocorrelations of monthly number of wet days and monthly rainfall

Figure 12.15: Comparison of model performances for autocorrelations of monthly number of wet days
and monthly rainfall depths for Perth as a representative station
Figure 12.16: Comparison of DHMC, MMKD and Combined Model (occurrence from MMKD and
depth from DHMC) to reproduce the mean of multiyear rainfall depths
Figure 13.1: Comparison of model performances for mean of wet day rainfall depths
Figure 13.2: Comparison of model performances for SD of wet day rainfall depths258
Figure 13.3: Comparison of model performances for mean of monthly rainfall depths259
Figure 13.4: Comparison of model performances for SD of monthly rainfall depths
Figure 13.5: Comparison of model performances for mean of annual rainfall depths
Figure 13.6: Comparison of model performances for SD of multiyear rainfall depths
Figure 13.7: Comparison of model performances for mean monthly number of wet days
Figure 13.8: Comparison of model performances for SD of monthly number of wet days
Figure 13.9: Comparison of model performances for mean of annual number of wet days
Figure 13.10: Comparison of model performances for SD of multiyear number of wet days263
Figure 13.11: Comparison of model performances for mean of monthly mean length of wet spells 264
Figure 13.12: Comparison of model performances for SD of monthly mean length of wet spells264
Figure 13.13: Comparison of model performances for mean (left) and SD (right) of the annual mean
length of wet spells
Figure 14.1: Mean and SD of the daily and monthly rainfall depths. The daily statistics are the mean and
SD for the days on which rain occurs and does not include dry days
Figure 14.2: Mean and SD of the multiyear rainfall depths
Figure 14.3: Mean and SD of the monthly (left) and multiyear (right) number of wet days269
Figure 14.4: Mean and SD of the monthly mean length of wet spells
Figure 14.5: Comparison of performances to reproduce the mean and SD of daily and monthly rainfall
depths for four validation periods272
Figure 14.6: Comparison of performances to reproduce the mean and SD of multiyear rainfall depths for
four validation periods
Figure 14.7: Comparison of performances to reproduce the mean and SD of monthly number of wet days
in four validation periods
Figure 14.8: Comparison of performances to reproduce the mean and SD of multiyear number of wet
days in four validation periods275
Figure 14.9: Comparison of performances to reproduce the mean and SD of monthly mean length of wet
spells in four validation periods
Figure 14.10: Comparison of performances to reproduce the mean and SD of annual mean length of wet
spells for four validation periods
Figure 15.1: The boxes in the right figure show three pixel windows (around Gummun) of three different
sizes. The figures in left panel show changes of the wet-to-wet probabilities (P11) and mean of wet
day rainfall depths (µ) with the changes in size of pixel windows

Figure 15.2: Distribution of correlation of daily rainfall timeseries (rts) between pairs of pixels at	
different distances for RCM2 at Williams River site.	.282
Figure 15.3: Distribution statistics of daily rainfall depths and streamflow volumes for the calibration	l
(1980–2009) and validation (1950–1979) periods at Grahamstown catchment	.284
Figure 15.4: Distribution statistics of daily rainfall depths and streamflow volumes for the calibration	l
(1980–2009) and validation (1950–1979) periods at Tillegra catchment	.284
Figure 15.5: Distribution statistics of multiyear rainfall depths and streamflow volumes for the	
calibration (1980-2009) and validation (1950-1979) periods at Grahamstown.	.286
Figure 15.6: Distribution statistics of multiyear rainfall depths and streamflow volumes for the	
calibration (1980–2009) and validation (1950–1979) periods at Tillegra	.286
Figure 15.7: Model comparison to reproduce the distribution statistics of daily rainfall and streamflow	N
for calibration (1980-2009) period of RCM1 at Grahamstown.	.288
Figure 15.8: Model comparison to reproduce the distribution statistics of daily rainfall and streamflow	N
for validation (1950–1979) period of RCM1 at Grahamstown.	.288
Figure 15.9: Model comparison to reproduce the distribution statistics of daily rainfall and streamflow	N
for calibration (1980–2009) period of RCM1 at Tillegra	.289
Figure 15.10: Model comparison to reproduce the distribution statistics of daily rainfall and streamflo	w
for validation (1950–1979) period of RCM1 at Tillegra	.289
Figure 15.11: Model comparison to reproduce the distribution statistics of multiyear rainfall and	
streamflow for calibration (1980-2009) period of RCM1 at Grahamstown.	.291
Figure 15.12: Model comparison to reproduce the distribution statistics of multiyear rainfall and	
streamflow for validation (1950-2079) period of RCM1 at Grahamstown.	.291
Figure 15.13: Model comparison to reproduce the distribution statistics of multiyear rainfall and	
streamflow for calibration (1980-2009) period of RCM1 at Tillegra	.292
Figure 15.14: Model comparison to reproduce the distribution statistics of multiyear rainfall and	
streamflow for validation (1950-2079) period of RCM1 at Tillegra	.292
Figure 15.15: Model Comparison for the autocorrelations of monthly rainfall (left panel) and streamf	low
(right panel) for RCM1 at Grahamstown.	.298
Figure 15.16: Model Comparison for the autocorrelations of monthly rainfall (left panel) and streamf	low
(right panel) for RCM1 at Tillegra	.299

List of Tables

Table 2.1: Pre-calibrated SimHyd parameters for three sub-catchments of the Williams River site.
Adapted from Mortazavi et al. [2013]27
Table 3.1: Geographical features (location and elevation) of the 12 raingauge stations
Table 3.2: List of 30 raingauge stations around Sydney. Daily rainfall data of 1979–2008 period for each
of these raingauge stations are obtained from Mehrotra et al. [2015]40
Table 3.3: Area of the Grahamstown, Tillegra and Chichester sub-catchments
Table 4.1: Methodological comparison among five MC models of this study
Table 5.1: Mean and SD of annual mean length of wet spells (µwet) for RCM2 and AWAP96
Table 5.2: Temporally averaged Z scores of five MC models of this study104
Table 6.1: Spatially and temporally averaged APMC values of model parameters
Table 6.2: Average of the absolute values of correlation coefficients between elevation and parameters.
Table 6.3: Spatially and temporally averaged values of the mean and SD of rainfall depth and wet period
statistics at annual and multiyear resolutions122
Table 6.4: Spatial (all pixels) and temporal (all months and years) average of the absolute values of Z
scores for mean and SD of rainfall depths
Table 6.5: Spatial (all pixels) and temporal (all lags 1-12) average of the absolute values of Z scores for
mean and SD of wet period statistics
Table 6.6: Spatial (all pixels) and temporal (all lags 1-12) average of autocorrelations of monthly rainfall
depths and number of wet days142
Table 7.1: Spatially and temporally averaged APMC values of model parameters
Table 7.2: Average of the absolute values of correlation coefficients between elevation and parameters.
Table 7.3: Spatially and temporally averaged values of the mean and SD of rainfall depth and wet-dry
period statistics at annual and multiyear resolutions156
Table 7.4: Spatially and temporally average of the absolute value of Z scores for mean and SD of rainfall
depths167
Table 7.5: Spatially and temporally average of the absolute value of Z scores for mean and SD of wet
period statistics
Table 7.6: Spatial (all pixels) and temporal (all lags 1-12) average of autocorrelations of monthly rainfall
depths and number of wet days170
Table 7.7: Spatially and temporally averaged APMC values of model parameters for reanalysis and four
GCMs of RCM2
Table 8.1: Spatially and temporally averaged APMC values of model parameters
Table 8.2: Average of the absolute values of correlation coefficients between elevation and parameters.

Table 8.3: Spatially and temporally averaged values of the mean and SD of rainfall depth and wet p			
statistics at annual and multiyear resolutions.	180		
Table 8.4: Spatially and temporally average of the absolute value of Z scores for mean and SD of r	ainfall		
depths.	188		
Table 8.5: Spatially and temporally average of the absolute value of Z scores for mean and SD of v	vet		
period statistics.	189		
Table 8.6: Spatial (all pixels) and temporal (all lags 1-12) average of autocorrelations of monthly r	ainfall		
depths and number of wet days.	191		
Table 9.1. Spatially and temporally averaged APMC values of model parameters	194		
Table 9.2: Average of the absolute values of correlation coefficients between elevation and parameters	oters		
Table 9.2. Average of the absolute values of correlation coefficients between elevation and parameters	106		
Table 0.2. Spatially and temporally averaged values of the mean and SD of rainfall donth and wat	nomiad		
radie 9.5. Spatially and temporary averaged values of the mean and SD of familian deput and wet	107		
statistics at annual and multiyear resolutions.	19/		
Table 9.4: Spatially and temporally average of the absolute value of Z scores for mean and SD of r	ainfall		
depths.	203		
Table 9.5: Spatially and temporally average of the absolute value of Z scores for mean and SD of v period statistics.	vet 204		
Table 9.6: Spatial (all pixels) and temporal (all lags 1-12) average of autocorrelations of monthly r	ainfall		
depths and number of wet days	206		
Table 10.1: Spatially and temporally averaged APMC values of model parameters.	208		
Table 10.2: Average of the absolute values of correlation coefficients between elevation and param	neters.		
	210		
Table 10.3: Spatially and temporally averaged values of the mean and SD of rainfall denth and we	t <u>2</u> 10		
neriod statistics at annual and multivear resolutions	212		
Table 10.4: Spatially and temporally average of the absolute value of Z scores for mean and SD of	212		
radie 10.4. Spatially and temporary average of the absolute value of Z scores for mean and SD of	210		
Talla 10.5. Sectially and the second state at a late only of 7 areas for more and SD of	·····218		
Table 10.5: Spatially and temporally average of the absolute value of Z scores for mean and SD of	wei		
period statistics.	219		
Table 10.6: Spatial (all pixels) and temporal (all lags 1-12) average of autocorrelations of monthly rainfall depths and number of wet days.	221		
Table 11.1: Average of the elevation-parameters correlations (absolute values).	225		
Table 11.2: Spatially and temporally averaged values of the mean and SD of rainfall depth at annual	al and		
multiyear resolutions	226		
Table 11.3: Spatially and temporally averaged values of the mean and SD of wet period statistics a	t		
annual and multivear resolutions.	226		
Table 11.4: Comparison of MC models for mean and SD of rainfall depths.	227		
Table 11.5: Comparison of MC models for mean and SD of wet period statistics			
Table 12.1: Methodological differences among CDMC, HMC, DHMC and MMKD			
Table 12.2: Mean of annual number of wet days and rainfall depth	235		
unit of animal finite of of the any of and funitari depair internet and			

Table 14.1: Mean and SD of the annual mean length of wet spells	0	
Table 15.1: Model comparison by the average of the absolute values of Z scores for rainfall depths for		
calibration period (1980–2009)29	4	
Table 15.2: Model comparison by the average of the absolute values of Z scores for streamflow volume		
for calibration period (1980–2009)	5	
Table 15.3: Model comparison by the average of the absolute values of Z scores for rainfall depth for		
validation period (1950–1979)	6	
Table 15.4: Model comparison by the average of the absolute values of Z scores for streamflow volume		
for validation period (1950–1979)	7	

List of Symbols and Notations

The following is a description of the symbols and notation commonly used in this thesis.

Symbol	Description	Unit
$P_{00,i}$	Probability of dry-to-dry day for month <i>i</i> , for January, $i = 1$	
$P_{11,i}$	Probability of wet-to-wet day for month <i>i</i>	
μ_i	Mean of wet day rainfall depths for month <i>i</i>	
σ_i	Standard deviation of wet day rainfall depths for month <i>i</i>	
r _{c,i}	Coefficient of correlation between log μ_i and log σ_i values for month <i>i</i>	
$\lambda_{\mu,i}$	Mean of log μ_i values for month <i>i</i>	mm
$\zeta_{\mu,i}$	Standard deviation of log μ_i values for month <i>i</i>	mm
$\lambda_{\sigma,i}$	Mean of log σ_i values for month <i>i</i>	mm
$\zeta_{\sigma,i}$	Standard deviation of log σ_i values for month <i>i</i>	mm
Е	Elevation	
r_0	Coefficient of correlation between Elevation and Parameters of MC	_
	model	
r _{ts}	Coefficient of correlation between rainfall timeseries in pairs of pixels	_
Ζ	Z score	_

Abbreviations

The following abbreviations are commonly used in this thesis:

BoM	Bureau of Meteorology
NARCliM	NSW/ACT Regional Climate Modelling
RCM	Regional Climate Model
AWAP	Australian Water Availability Project
ECL	East Coast Low
MC	Markov Chain
APMC	Average Parameter Markov Chain
DPMC	Decadal Parameter Markov Chain
CDMC	Compound Distribution Markov Chain
HMC	Hierarchical Markov Chain
DHMC	Decadal and Hierarchical Markov Chain
MMKD	Modified Markov Kernel Density

Abstract

The key objective of this study is to develop a stochastic daily rainfall model, which can be used in streamflow and reservoir water simulation for urban drought security assessment. After critically reviewing the existing rainfall simulation techniques, this study has developed a Markov Chain (MC) model for stochastic generation of daily rainfall. The MC model uses a two-state MC process with two parameters (wet-to-wet and dry-to-dry transition probabilities) to simulate rainfall occurrence and a Gamma distribution with two parameters (mean and standard deviation of wet day rainfall) to simulate wet day rainfall depths. One of the major focuses of the study is to evaluate the ability of the stochastic model to preserve the rainfall variability and autocorrelation at daily, monthly and multiyear resolutions. Preserving monthly to multiyear variabilities in a daily rainfall model is always challenging, while those longerterm variabilities are critically important for the drought security analysis of reservoirs as the reservoir water levels usually vary in monthly to multiyear resolutions. The traditional models usually underestimate the monthly to multiyear variability, which results in the overestimation of reservoir reliability. On the other hand, the daily variability is also important in many parts of the world to take the influence of short-term extreme rainfall events into account (e.g. East Coast Lows in eastern Australia, which may occur for a few days or weeks, but substantially contribute to the reservoir water level).

Five variants of the MC model with different parameterisation techniques have been tested in this study. The first model, referred to as the Average Parameter Markov Chain (APMC) model, uses deterministic parameters of MC and Gamma distribution, that is, the same parameter set is used to simulate the rainfall in all years. The second model, referred to as the Decadal Parameter Markov Chain (DPMC) model, also uses deterministic parameters of MC and Gamma distribution, but the parameters vary for each decade. The third model, referred to as the Compound Distribution Markov Chain (CDMC) model, uses deterministic parameters of MC (same as APMC) and stochastic parameters of the Gamma distributions for each month. The fourth model, referred to as the Hierarchical Markov Chain (HMC) model, uses stochastic parameters of both MC, by sampling wet-to-wet and dry-to-dry transition probabilities from fitted distributions, and Gamma distribution (same as CDMC). The fifth and final model, referred to as the Decadal and Hierarchical Markov Chain (DHMC) model, uses decade-varied parameters of MC (same as DPMC) and stochastic parameters of Gamma distribution (same as CDMC).

To calibrate the model parameters and compare their performance, this study has used dynamically downscaled rainfall data produced by the NSW/ACT Regional Climate Modelling (NARCliM) project (reanalysis data for three Regional Climate Models (RCMs)), gridded data by the Australian Water Availability Project (AWAP), and ground-based data of raingauge stations. The MC models have been assessed in five catchments of coastal NSW – (i) Goulburn River site (ii) Williams River site (iii) Sydney site (iv) Richmond River site and (v) Bega River site using the NARCliM and AWAP datasets. In addition, raingauge data for 12 raingauge stations around Australia and 30 stations around Sydney have been used to compare the MC models with an existing model. To compare the model performance for streamflow generation, this study has used area-averaged rainfall data of NARCliM and AWAP in a SimHyd hydrology model for three sub-catchments of the Williams River site (i.e. Hunter Water System).

The APMC satisfactorily reproduces the variability of rainfall depths and wet periods at daily resolution only, and significantly underestimates the variability at monthly to multiyear resolutions. The DPMC also significantly underestimates the variability of rainfall depths at monthly to multiyear resolutions, but mostly preserves the variability of wet periods at monthly to multiyear resolutions. The CDMC satisfactorily reproduces the variability of rainfall depth at daily to multiyear resolutions, but significantly underestimates the variability of wet periods at multiyear resolution. The performance of CDMC for wet period variability is consistent with the respective performance of APMC, as both models use the same deterministic parameters of the MC process. The HMC also satisfactorily reproduces the variability of rainfall depths at daily to multiyear resolutions, which is consistent with CDMC as both models use the same stochastic parameters of Gamma distribution. However, the HMC can preserve the variability of wet periods at multiyear resolutions, but significantly overestimates the variability of wet periods at monthly resolution. The DHMC performs better than the other four models, and satisfactorily reproduces the variability of rainfall depths and wet periods at all resolutions, although it significantly underestimates the variability of wet days at shorter multiyear resolutions. For mean of rainfall depths and wet periods, all five MC models perform satisfactorily, although the CDMC, HMC and DHMC show a slight tendency to underestimate the mean of rainfall depths, particularly at multiyear resolutions. For month-to-month autocorrelations of monthly rainfall depths and monthly wet days, all five models perform satisfactorily, except the HMC shows a tendency to underestimate the autocorrelations. The above results suggest the following conclusions:

- The models with deterministic parameters of Gamma distribution (e.g. APMC and DPMC) cannot reproduce the monthly to multiyear variability of rainfall depths. Stochastic parameters of Gamma distribution (e.g. CDMC, HMC and DHMC) are useful for satisfactorily reproducing the short and long-term variability of rainfall depths.
- Deterministic parameters of MC (e.g. APMC and CDMC) underestimate the multiyear variability of wet periods, while stochastic parameters of MC (e.g. HMC) overestimate the monthly variability of wet periods. Decadally varied parameters of MC (e.g. DPMC and DHMC) are better to satisfactorily reproduce the variability of wet periods at monthly to multiyear resolutions.
- The stochastic parameters of Gamma distribution (e.g. CDMC, HMC and DHMC) yield a slight underestimation of mean rainfall depths.
- The MC models are adequate to reproduce the autocorrelations of monthly rainfall depths and monthly wet days. The underestimation of the autocorrelations in HMC might be linked with the overestimation of wet period variability.

This study has compared the performance of CDMC, HMC and DHMC with an existing Modified Markov Kernel Density (MMKD) model by Mehrotra and Sharma [2007]. The MMKD uses a modified MC process with memory of past periods to simulate rainfall occurrence and resamples rainfall depths for wet days from observed records using a kernel-density estimation. The MC models are methodologically simple and straightforward in comparison with the relative complexity of the MMKD. Despite the methodological simplicity, the DHMC shows comparable satisfactory performance as MMKD to reproduce the distribution and autocorrelations of rainfall depths and wet periods at daily to multiyear resolutions. The other two MC models, CDMC and HMC, also show comparable performance to reproduce the distribution of rainfall depths at all resolutions, but fail to preserve the distribution of wet periods at all resolutions. However, MMKD tends to overestimate the mean of rainfall depths at all resolutions, which might be caused by the resampling of wet day rainfall depths using kernel-density estimation.

The performance of CDMC, HMC, DHMC and MMKD have also been compared for streamflow generation. The performance of each model for streamflow generation is consistent with their respective performance for the rainfall depths. The MC models perform similarly and

slightly better than the MMKD to reproduce the distribution and autocorrelation of streamflow volume.